
Journal of  Statistical Physics, VoL 22, No. 4, 1980 

Hard-Square Lattice Gas 
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We have studied the hard-square lattice gas, using corner transfer matrices. 
In particular, we have obtained the first 24 terms of the high-density series 
for the order parameter p2 - pl. From these we estimate the critical activity 
to be 3.7962 _+ 0.0001. This is in excellent agreement with the earlier work 
of Gaunt and Fisher. It conflicts with the value 4.0 given by MiJller-Hart- 
mann and Zittartz's formula for the critical point of the antiferromagnetic 
Ising model in a field, so we conclude that this formula, while a good 
approximation, is not exact. 
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1. I N T R O D U C T I O N  

It  has been known for some years that  good  numerical estimates of  the 
thermodynamic  properties o f  simple two-dimensional  lattice models can be 
obtained using the "co rne r  transfer mat r ix"  (CTM) formalism. (1-r Very 
recently it has also been shown that  this method can be used to obtain 
series expansions (5) longer than those previously obtained by graphical 
methods.  

Until now, the C T M  method has been applied only to " f e r romagne t i c "  
systems in which the thermodynamic  states are translation invariant. Here 
we consider an "an t i fe r romagne t ic"  system: the hard-square lattice gas. In 
this model  the translation invariance symmetry is broken at sufficiently 
high densities, one or  the other o f  the two sublattices being preferentially 
occupied. 

The hard-square lattice gas is an interesting model  in its own right and 
was studied by series expansions by Gaun t  and Fisher (6~ in 1965 and numeric- 
ally by Runnels and Combs  (7~ in 1966. F r o m  our  point  o f  view it has the 
advantage that  there is only one parameter  (usually the activity z), so we only 
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have to handle single (rather than multiple) series on the computer. This has 
meant that our computer time was measured in minutes, rather than hours. 

Added interest has also been given to the problem by Miiller-Hartmann 
and Zittartz. (8) They considered the antiferromagnetic square-lattice Ising 
model with spins ~ = + 1 at sites i, and Hamiltonian 

~'~ = J .<~j> c q e j -  H ~ e ~ ,  J > 0  (1.1) 

the first summation being over all nearest neighbor pairs (ij) of sites. By 
considering the interfacial tension, they obtained the formula 

cosh(H/kT) = sinh2(2J/kT) (1.2) 

for the position of the critical point (for the antiferromagnetic model there is a 
critical point even for nonzero H). 

Although their derivation of the interracial tension was approximate, the 
formula (1.2) is exact (~ for H = 0. It has been conjectured <1~ that it may be 
exact for all H, and Lin and Wu <1~) have extended the conjecture to the 
triangular-lattice Ising model. 

If  one lets J/kT and H/kT both tend to infinity, keeping 

z = e x p [ ( 8 J -  2H)/kT] (1.3) 

fixed, then the antiferromagnetic Ising model becomes the hard-square lattice 
gas with activity z. The formula (1.2) then gives the critical activity zc of z 
to be 

zc = 4 (1.4) 

This is fairly close to the numerical estimate 3.80 + 0.02 of Gaunt  and 
Fisher. Indeed, it was tempting to speculate that Gaunt  and Fisher may have 
been overoptimistic in their error bounds, and that (1.4) is correct. 

For  this reason we have been particularly interested in locating zc. Our 
best estimate was obtained from the large-z (high-density) expansion of the 
order parameter 02 - p~. Gaunt  and Fisher had obtained the first 10 terms in 
this series: we have extended the number of known terms to 24. Our conclusion 
is that Gaunt  and Fisher were remarkably accurate in their best estimate, and 
properly conservative in their error bounds: in their equation (5.31) they 
quote a value 0.7915 + 0.0010 of z~/(1 + z~), giving Zc = 3.7962 + 0.0230. 
We find that 

zc = 3.7962 + 0.0001 (1.5) 

It therefore appears that (1.2) is not an exact result. Even so, it is a 
remarkably simple and reasonably accurate approximation. 
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2. THE C T M  EQUATIONS 

To each site A of  a square lattice of  N sites assign a " sp in , "  or  ~ occupa-  
t ion n u m b e r "  a~. I f  each spin interacts only with spins on a c o m m o n  face, 
then the part i t ion funct ion is 

Z = ~ I - I  w(aa, aa, a~,aO (2.1) 
{a} (h,u,v,z) 

where the produc t  is over  all faces (A, ix, v, z) of  the lattice (such as that  shown 
in Fig. 1), the sum is over all al lowed values of  al ..... air, and w(aa, a,, av, aO 
is the Bol tzmann weight of  a face. 

In  part icular,  for  the hard-square  lattice gas, we can take 

aa = 0 if site A is empty  (2.2) 

= 1 if site A is occupied 

We require that  no two adjacent  sites be occupied, and assign an activity z to 
each occupied site. Sharing out these activities a m o n g  the four  surrounding 
squares, it follows that  

w(a, b, c, d) = Z(a+b+c+a)/4gabgbagacgca (2.3) 
where 

g0o = goz = gzo = 1, glz = 0 (2.4) 

'We want  to calculate the the rmodynamic  propert ies,  in part icular  the 
part i t ion function per site: 

= lira Z 1/N (2.5) 
N--* co 

and the mean  density at site ;~ 
Pa = (a~) (2.6) 

F o r  a t ransla t ion- invar iant  system the corner t ransfer  matr ix  equations 
are given in Eqs. (30) and (47) of  Ref. 3. However ,  t ranslat ion-invariance 
symmetry  is spontaneously  broken in the hard-squares  model :  one or the 
other  of  the two sublattices is preferentially occupied. 

Fig. 1. A typical face of the square lattice, with corner 
sites )l, t~, v, r. 
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Fig. 2. Typical half-column and half-row segments of the infinite square lattice. Their 
weights are the elements F~ of the matrix F, 

To obtain sensible high-density approximations we must allow for this 
lack of symmetry. Divide the lattice into two sublattices 1 and 2 (open circles 
and filled circles) such that sites 1 are adjacent only to sites of type 2, and 
vice versa. 

The easiest way to derive the CTM equations is to generalize the graphical 
interpretation given in Figs. 2-4 of Ref. 3. First consider all the possible half- 
row and half-column segments that can be formed in the infinite lattice. Four  
such are shown in Fig. 2. To each a label i is associated with the long edge 
ending in an open circle, and a label j  to the one ending in a filled circle. This 
i(j) denotes all the occupation numbers of the sites on its edge [it replaces 
the pair (a, ~) of Ref. 3]. 

Even allowing for a distinction between the sublattices, it is evident that 
all the four segments shown in Fig. 2 are equivalent, in that we expect the 
probability distribution P(i, j) to be the same for each. Four  other equivalent 
segments can be obtained by rotating the figure through 180 ~ . With each such 
segment we therefore associate a weight F~j. 

Similarly, we consider the eight possible quadrants that can be formed in 
the infinite lattice. Three such are shown in Fig. 3. Labels i or i' are associated 

i i! i i i iiiii iiiiiii i i i     iiiiiiiii!iiiiiii iiiiiiiiiiii iii iiiiiiiiiii!iiiiiiiiiii    iii iiii!iii!ii i :ii!i!iiii iiiiii ! ! !iiiiii! iii !iii!i!i!i i i i  !i   i i!iiiii!ii i ii iiii ii 
i ~iiiiii!;!ii;iiiiiiiiliiii~i!~iiiiiii;ili!i~;iiiiiiiiliiiiiililil j j 

i j j ,  

Fig. 3. Typical quadrants,  or "corners ,"  of the infinite square lattice, with weights A~ 
and B , ,  ; A and B are the "corner  transfer matrices." 
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with edges ending in an open circle; j or j '  with ones ending in a filled circle. 
It is evident that there are only two distinct quadrants: ones with an open 
circle at the corner, and ones with a filled circle. With the first we associate a 
weight A,,, with the second a weight Bjj,. Plainly they satisfy the symmetry 
conditions 

A~t, = At,t, Bij, = Bj,~ (2.7) 

The indices i and i '  denote all the occupation numbers on the correspond- 
ing two edges in Fig. 3. Since the corner site is common to both edges, they 
are not quite independent, For an edge of type i, ending in an open circle, let 
sz be the occupation number (0 or 1) of the end site. Similarly, for an edge of 
type j, let tj be the occupation number of the end site. Then A~, (Bjj,) is defined 
only if s~ • st, (tj = tj,). 

It is convenient to extend the definition and to set 

Art, = 0 if st # st, 

Bjj, = 0 if ts # tj, (2.8) 

Now consider the analog of Fig. 4 of Ref. 3. In our case we obtain the 
two diagrams in our Fig. 4, plus two others obtained by interchanging filled 
and open circles. 

First consider Fig. 4a, which contains two graphs, one on either side of 
the equals sign. The occupation numbers i, i '  on the left-hand vertical edges 
are to be regarded as given; all others are to be summed over. For  each graph 
this gives the unnormalized probability distribution P(i, i') of spins on the 
left of a semi-infinite lattice. Since this is independent of the manner in which 
the lattice is built up, both sides must be the same, to within a normalization 
factor ~:. Thus 

FtjBsj,Byj,,F~,j,, = ~ ~ A~,,A~,~, (2.9a) 
j , j ' , j -  4" 

Since the edges i and i '  end in the same site, this equation is valid for all i, i '  
such that 

s~ = si, (2.9b) 

i H 

~: ~' . . . . .  ' .................... ....... 

i 2: . . . . . .  

! ,iiiii iiiii  , = ; ::;i- i, 

t F 
J j, 

(ol (hi 
Fig. 4. Diagrammatic representation of Eqs. (2.9) and (2.11). 
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A similar equation can be obtained by interchanging filled and open 
circles in Fig. 4a. From Figs. 2 and 3, the effect of this is to interchange the 
indices of F, and to interchange A with B. Also interchanging i with j, we 
obtain 

FuA, ,Av , ,F~ , j ,  = ~' ~_, B z , B j ,  J, (2.10a) 
ii'~" j" 

for all j, j '  such that 

tj --- tj, (2.10b) 

In the same way, Fig. 4b leads to the equation 

w(&, tj,, ty, sv)Fu,Bj,j ,Fvj,Av,, ,Fi, ,  j 
j ' j"i '{" 

= ",7 ~ A,,F~,j,Bj,j  (2.11) 
i 'j" 

for all i and j. Interchanging filled and open circles in Fig. 4b merely leads 
again to (2.11) with the products in reverse order, so (2.9)-(2.11) are the 
complete generalization of Eqs. (30) and (47) of Ref. 3. 

It is obvious from (2.9) and (2.10) that it is useful to regard A,,, Bz,, and 
F,. as elements of infinite-dimensional matrices A, B, F (the corner and half- 
column transfer matrices). Further, by inserting the diagonals in the quadrants 
of Fig. 3, one can define matrices X, Y such that 

A = X~'X,  B = y T y  (2.12) 

where X(Y) has the same block-diagonal property as A(B) ,  i.e., 

X. ,  = 0 ifs~ # s~, 

Yz' = 0 if tj # tj, (2.13) 

If  s~ = tj = 1, then Fu is the weight of a half-column with the two end 
sites both occupied. Since this is not allowed, F u must be zero for all such 
i and j. From (2.4) it follows that 

g(s, ,  t j )F u = F u (2.14) 

Equations (2.9)-(2.11) can now be simplified a little by defining 

H u = z(S ,+~#~(XFYr)u ,  C . ,  = z - s , / 4 ( X X r ) . , ,  

They then become 

( H D H r ) w  = ~zs,(C3)., 
( H T  C H ) z ,  = ~' zt~( D3)z ,  

g(s, ,  t j ) ( H H r H ) u  = ~7(CHD)u, 

D z ,  = z - t / 4 ( Y Y r ) z ,  
(2.15) 

i f  S~, = S~ 

if t z = tj 
all i, j 

(2.16) 
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If  we also define W, W by 

Wu, = zS~3,,, Wss, = zq3 z, (2.17) 

then the CTM equations (2.16) can be written in the simple form 

H D H  r =  ~ W C  a, [C] (2.18a) 

H r C H  = f ' W D  3, [D] (2.18b) 

H H r H  = ~TCHD, [H] (2.18c) 

C r =  C, D r =  D (2.18d) 

where [U] after a matrix equation (any U) means that if an element of U is 
defined to be zero by (2.13)-(2.15), then the corresponding element of the 
equation is to be ignored. 

3. THE FREE ENERGY A N D  SUBLATTICE DENSITIES 

Define 

rl = Tr W C  4, rl = Tr WD 4, r2 = Tr C H D H  r, r3 = Tr H H r H H  r 

(3.1) 

Then it is evident from (2.18) that 

= r2 /r l , '  ~' = r2/71, ~ = ra/r2 (3.2) 

Further, if we define K2 by 

~2 = ~ f f / ~ '  = rlrlra2/r24, (3.3) 

then K2 is stationary with respect to variations in the matrices C, D, and H, 
provided that (2.18) is satisfied. 

By considering large, but finite, lattice segments, as in Eq. (65) of Ref. 3, 
one can establish that ~2 is related to the partition function per site K (which is 
the exponential of the negative free energy) by 

K = K~/2 ( 3 . 4 )  

A partial verification of this result can be obtained by differentiating 
(3.3) with respect to z. Since x2 is stationary with respect to C, D, and H, we 
can ignore the increments induced in these, leaving 

Tr'  W C  4 Tr' WD 4 
z In K2 = Tr W C  ~ + Tr W D  - - - - ~ - 4  (3.5) 

the primes indicating that the traces are only over diagonal elements (i, i) or 
( j , j )  for which s~ = 1 or tj = 1. 

From (2.17), (2.15), and (2.12), 

Tr '  W C  ~ Tr'  A ~ 
'Tr W C  - - - - - - 7  = Tr A -----3- (3.6) 
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Fig. 5. Diagrammatic representation of Tr A*. 

As is evident f rom Fig. 5, Tr  A 4 is the unnormal ized  part i t ion funct ion 
of  an infinite lattice centered on an open circle site. Further ,  Tr '  A ~ is the 
same sum-over-states ,  but  restricted to states where the central site is occupied. 
Their  ratio is simply the mean  density on a site on sublattice 1, as defined by 
(2.6). Thus  

pl = Tr '  WC4/Tr WC ~ (3.7a) 

and similarly 

p2 = Tr '  WD~/Tr WD ~ (3.7b) 

Thus (3.4) and  (3.5) give 

z(~/~z) In K = �89 + p2) (3.8) 

and this is indeed the correct  t he rmodynamic  formula.  
A stronger  test is also available. Since we have consistently distinguished 

between the two sublattices, we could assign different activities zl and z2 to 
the sublattices 1 and 2, respectively. The  only change in (2.17)-(3.4) is tha t  the 
first z in (2.17) becomes zl, the second z2. Differentiating (3.3) then gives the 
correct  result 

z~(~/az~) In ~c = �89 i = 1, 2 (3.9) 

F r o m  now on we re turn to the case zl = z2 = z. 

. S O L V I N G  T H E  E Q U A T I O N S  

Equat ions  (2.18) define C, D, H to within normal iza t ion  factors and to 
within the or thogona l  t rans format ions  

C--+ PrCP, D--+ QrDQ, H-+ PrHQ 

where P, Q are o r thogona l  matrices satisfying 

P~, = 0 if s~ ~ s~, 

Q Jr = 0 i f t j  ~ t r 

(4.1) 

(4.2) 
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Thus P and {2, like C and D, are block-diagonal. It follows that they can 
be chosen to ensure that C and D are strictly diagonal. With some slight 
modifications, this is the representation we use. 

The equations are exact, but the matrices are infinite dimensional. The 
essence of the CTM method is that very good approximations can be obtained 
by truncating the matrices to finite size. The equations can then either be 
solved numerically for given values of z, or they can be used to obtain series 
expansions for the elements of the matrices, and hence for K, P~, and 02. 

The larger the matrices, the more accurate are the numerical results, ~4~ 
and the larger the number of correct terms in the series expansionsJ 5~ 

Given a reasonable initial guess for small or large z, the equations can 
be solved numerically by the Newton-Raphson method. The results can then 
be extrapolated to less extreme values of z and the procedure repeated. 
Alternatively, if the leading powers of all the matrix elements are known, then 
series expansions can be obtained by successively solving the equations to 
leading order, next leading order, etc. 

To obtain such initial guesses, or leading powers, we adapted the method 
given in Section 3 of Ref. 3. Define U by 

H T H  = U (4.3a) 

Then (2.18c) becomes 

H U  = ~ C H D  (4.3b) 

Suppose ~7, C, and the first H on the LHS of (4.3) are known. If D is 
diagonal, then any co lumnj  of (4.3) is a coupled pair of eigenvalue equations 
with eigenvalue Djj, columns j of H and U being the corresponding eigen- 
vectors. The normalization of these vectors is given by the (j, j )  element of 
(2.18b). 

Similar equations for Cu and rows i of H can be obtained by transposing 
(2.18c), defining H H  ~ = V,  and using (2.18a) as the normalization condition. 

Solving these eigenvalue equations, with the solution of a given trunca- 
tion, one obtains not only the original diagonal elements of C and D, but also 
some new ones. The largest (or group of largest) of these should be kept and 
the matrices appropriately expanded. In this way one can build up larger and 
larger truncations: a similar procedure is exhibited in Section 3 of Ref. 5. 

5. A C C U R A C Y  OF A GIVEN T R U N C A T I O N  

It is obviously important to know how accurate a particular truncation is. 
This is particularly true of series expansions, where one needs to know how 
many of the coefficients are correct. 

In the absence of a rigorous treatment of the infinite-dimensional 
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matrices, we are forced to look for simple patterns in the sequence of approxi- 
mations obtained by successively larger truncations. This can be done in two 
ways: either by merely comparing successive truncations and observing which 
coefficients change; or by considering a subtruncation of a larger one and 
seeing at what order the " o u t e r "  terms enter the " i nne r "  equations. 

Fortunately some very simple patterns emerge. To discuss them it is 
useful to define 

r~ = (WC4)~/(WC4)~I,  Aj = (WD4)z / (WD4)I~ (5.1) 

and to tighten the expansion rule at the end of Section 4 to become: Locate 
the largest new s or Aj. Keep this and all s or/xj of  the same order, as well 
as all the original F~, A s. 

We then find empirically that: 
(i) All new s encountered in enlarging a truncation are at least one 

order higher than all the old ones. The old ones are unchanged to leading 
order (so in general are all the old matrix elements). Thus the sequence of 
truncations groups the collated set (F~, Aj) in strictly increasing order. 

(ii) I f  the largest s or • not included in a given truncation is of order n, 
then ~ is accurate to relative order n - 1. 

As was emphasized in Refs. 4 and 5, rule (ii) makes good sense. From 
(3.1), neglecting a F~ or/Xj of order n introduces a relative error into r~ or 
~1, and hence into x, of order n. Of  course this is a naive simplification, since 
truncating the matrices alters all elements at some order. Even so, it appears 
to have some validity: so far we have not found an exception to it in any of the 
models we have considered. 

6. H I G H - D E N S I T Y  L E A D I N G - O R D E R  S O L U T I O N  

As z -+ ~ ,  all sites of  one sublattice (say 2) become occupied, all sites of 
the other (1) empty. There is then only one allowed state of  the occupation 
numbers on a segment edge. Taking this to be state "one , "  it follows that  
sl = 0 a n d t l  = 1, so 

W = (1), W = (z) (6.1) 

The matrices C, D, H are one-by-one. Their normalization is arbitrary, 
so we can choose 

C = (1), D = (1), H = (1) (6.2) 

Then (2.18) gives 

= 1, ~ ' =  z -1, V = 1 (6.3) 

and (3.3), (3.4), and (3.7) give the expected close-packed results 

~c = z 112, pl  = 0, ,02 = 1 (6.4) 
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W e  bu i ld  up  f r o m  this  o n e - b y - o n e  so lu t ion  in the  m a n n e r  g iven  in  Sec- 

t ions  4 a n d  5. T a k i n g  (6.2) to be the  first, the  e leven th  t r u n c a t i o n  gives C, D, 

H to be 7 by  7, 6 by  6, a n d  7 by  6 matr ices .  Set 

x = z - 1  ( 6 . 5 )  

S = (sl,  s2, s3,...), T = (h ,  t2, t3 .... ) (6.6) 

a n d  

H = L 1 / 2 G M  112 (6.7) 

where  L a n d  M are d i a g o n a l  mat r i ces  t ha t  are  a t  ou r  disposal .  W r i t i n g  the 

d i a g o n a l  mat r i ces  C, D, L, a n d  M in  row-vec tor  form,  we f ind that ,  to l ead ing  

s - - ( o  1 1 o 1 o 1) 

C = ( 1  x x 2 2x 2 x 3 1�89 3 x ~) 

L = (1 x x 2 4x 5 x a - ~ x  6 x ~) 

T = ( 1  0 0 0 1 0 )  

D = (1 1 x x ~ 2x 3 x a) 

M =  (1 x x 2 x 3 x 2 x 4) 

G = 

order ,  

1 1 - x  2 x ~ 0 .x  6 - 2 x  6" 

0 1 1 - x 2 0 2x ~ 

0 - x 2 1 1 0 0 .x  ~ 

- x  1 x -1 �89 -1 1 1 

0 x ~ - x  2 1 0 1 

8 34__X - 1 x 2 - x 1 2 x -  1 ~- 

0 - x 6 x 4 - x 2 0 1 

(6.8) 

E l emen t s  of  G d en o t ed  s imply  by  0 are  exact ly zero. E l emen t s  such as 
0.x 6 are on ly  zero  to  the  o rder  given.  

The  largest  I'~ or  Aj  omi t t ed  in  this t r u n c a t i o n  are  F 8, Pg, a n d  AT, which  
are all  o f  o rder  x 16. T h u s  we expect  this t r u n c a t i o n  to give K correct ly  to 
o rder  15. This  was b o r n e  o u t  by  o u r  s u b s e q u e n t  ca lcu la t ions  o f  larger  

t r u n c a t i o n s .  Also ,  to  go to o rder  16 we m u s t  inc lude  Fa, F 9, a n d  A 7, i.e., go to 

a 9 by  7 t r u n c a t i o n  o f  H.  
A c o m p l i c a t i o n  arises in  this nex t  s tep:  Csa a n d  Cgs are e igenvalues  of  the 

same  ma t r ix  e q u a t i o n ,  a n d  are  o f  the  same order.  This  m e a n s  that ,  to l ead ing  
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order, one has a genuine two-by-two matrix to diagonalize, thereby intro- 
ducing nonrational numbers. To avoid this we modify the requirement that 
C be strictly diagonal, and allow C89 ( =  C98) to be nonzero. 

The corresponding H-eigenvectors have dominant elements in positions 
4 and 6, respectively, and these in turn correspond to Hs~ and H96. Since 
from (4.1) we are free to premultiply H by a two-by-two orthogonal matrix P 
mixing rows 8 and 9, we can and do choose Ha6 to be zero. This fixes the 
representation. 

Continuing to the 17th truncation, similar complications arise with rows 
11 and 12, columns 9 and 10, and columns 11 and 12. The matrix H is then 
13 by 12. The values of S and T, and the leading powers of the nonzero 
elements of C, D, L, M, G, are given in Appendix A. 

The next largest F~, Aj are F14, P~5, F~6, Ala, and A14, which are all of 
order x 24. We therefore expect the 13 by 12 truncation to give • correctly to 
order 23. To obtain the next order we would have had to go to a 16 by 14 
truncation, so it was convenient to stop at order 23. 

7. L O W - D E N S I T Y  L E A D I N G - O R D E R  S O L U T I O N  

At low densities (z < zc), the sublattice symmetry is not broken, so from 
Figs. 2 and 3 it is apparent  that F T = F and B = A. I t  follows from (2.12)- 
(2.15) and (3.7) that 

H ~ = H, D = C, h = s~, Pl = p2 (7.1) 

Equations (2.18) are then a special case of Eqs. (13) of  Ref. 5. 
When z = 0, all sites are empty, so there is only one allowed state i of the 

occupation numbers on a segment edge. Taking this to be state "one , "  it 
follows that sl = tl = 0, and 

W = W = (1) (7.2) 

The matrices C, D, H are one-by-one, so again we can choose them to be 

C -- D = (1), H = (1) (7.3) 

Then (2.18), (3.3), (3.4), and (3.7) give 

{: = {:' = ~/ = K = 1 ,  p l  = 0 2  = 0 ( 7 . 4 )  

and these are indeed the zero-density values of  K, 01, P2. 
We build up f rom this one-by-one truncation as in Sections 4 and 5. At 

the seventh truncation all matrices are 7 by 7. Again it is convenient to write 
H in the fo rm (6.7), only now we naturally choose 

M = L (7.5) 
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To leading order we obtain 

S = ( 0  1 0 0 1 0 l) 

C =  (1 1 z 2 z 4 2z ~ z 6 1�89 6) 

L = (1 z z 5 z ~ 8z 6 z 9 3~z 1~ 

G = 

1 1 - z - -  z 5 - z 7 - z 7 - � 8 9  9 

1 0 1 z 4 0 z 6 0 

- z  1 z -  ~ 1 1 z 2 � 8 9  2 

- z  5 z ~ 1 --1 - � 8 9  1 1 

- z  7 0 1 - � 8 9  0 �88 0 

- z  7 z ~ z 2 1 �88 - z - ~  - ~ Z z - ~  

- � 8 9  9 0 �89 2 I 0 - ~ z -  ~ 0 

(7.6) 

']?he largest F~, Aj omitted in this truncation are F 8 = 2~ 8 and [ '9 = A9, 
which are of  order z 32. Thus this truncation should give K correctly to order 
31. 

We continued to the l l t h  truncation, when the matrices are 13 by 13. 
The largest F~ or Aj then omitted are of  order z 48, so we expect this truncation 
to be accurate to order 47 in K. In fact we have only calculated K to order 42. 

Since C88 and C99 have the same order, and s8 = sg, we allowed C89 to 
be nonzero and set H86 to zero. Similarly C1~,~1 and C~2.z2 have the same 
order and s value: we let C~a,12 be nonzero and set H~z,9 to zero. The values 
of  S, and the leading powers of  the nonzero elements of C, L, G, are given in 
Appendix A. 

8. D E R I V A T I O N  OF SERIES E X P A N S I O N S  

We used (2.18) to expand ~:, ~e,, 7, and the matrix elements in increasing 
powers of x (for high densities) or z (for low densities). 

The diagonal elements of  (2.18a) and (2.18b) act as quadratic normaliza- 
tion conditions on the rows and columns o f / / .  To solve them as written would 
involve taking square roots. We avoided this by substituting the form (6.7) 
of  H into (2.18) and using the resulting extra freedom to fix certain "domi-  
nan t"  elements of  G (those denoted by an asterisk in Appendix A) to be unity. 
Then (2.18a) and (2.18b) became linear equations for the corresponding 
elements of  L and M. 

We also fixed Cll, D~I, Lit ,  Ml l  all to be unity. Then the (1, 1) elements 
of (2.18) serve to define ~:, ~:', 7- 
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We then found that Eqs. (2.18) could be solved sequentially for all the 
variables. Each step consisted only in solving one or two linear equations for 
one or two variables, and gave one more correct term in the expansion of this 
(these) variable(s). 

The procedure was similar to that of Ref. 5, the main difference being 
that we used an appropriate diagonalization procedure to compute the leading 
powers from (4.3), and then let the computer decide which equation(s) to 
solve for which variable(s). Given the leading powers, the procedure was as 
follows: 

(i) Basic sequence. Initially regard the leading coefficients of all variables 
(except those fixed to be unity) as unknown. 

Examine each matrix element equation at leading order. Does it contain 
only one variable whose leading coefficient is unknown ? Is the factor multi- 
plying this variable nonzero at leading order ? If both answers are yes, then 
solve for the leading coefficient of this variable, and record that this variable 
is determined by this equation. 

It is sometimes necessary to generalize this procedure and to look at 
selected pairs of equations, seeing if a pair can be solved linearly for two 
variables at once. 

Keep iterating through the equations until all leading coefficients are 
known (some may be zero). This gives a basic sequence for solving the 
equations. 

(ii) Required orders. To calculate ~ to a given order n, it is only necessary 
to calculate any variable to some relative order n - r, where r is nonnegative 
and independent of n. This r we call the "required order"  of the variable. 
The program calculates these iteratively as follows. 

First set the required orders of K, ~:, f ' ,  ~/to zero, the rest to infinity. 
Now go through the basic sequence of equations and variables. At each step 
the variable v to be evaluated has a current value of r. Examine every other 
variable in the equation and determine to what required order it is needed for 
v to be calculated with required order r. If necessary, modify the required 
order of this other variable accordingly. 

Repeat this procedure until a complete cycle through the basic sequence 
produces no modifications. 

The purpose of calculating the required orders is to ensure that each 
variable is finally calculated only to the minimum order necessary: if a 
variable has r = 17 and we want K to order 21, then the variable only has to 
be calculated to relative order 4. 

The required orders can also be used to determine the accuracy of a 
subtruncation of a larger truncation, and hence to estimate the accuracy of 
successive truncations. We found they were sometimes overconservative, 
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presumably because we were not using the optimal route for solving the 
equations. 

(iii) Ordered search procedure. The next phase  of the program is similar 
to (i), except that first it finds a subsequence of the basic sequence to calculate 
all variables with r = 0, then all those with r = 1, and so on. 

(iv) Execution. Following (iii), the actual calculation of coefficients be- 
gins. All variables with r = 0 are calculated to leading order. Then those with 
r = 1 are calculated to leading order, those with r = 0 to next-plus-leading. 
Then those with r = 2, 1, 0 are calculated to leading, next-plus-leading, and 
second relative order, respectively; and so on. This stops when ~c is calculated 
to the order desired. At each step it is verified that the other variables in the 
equation are in fact known to the orders needed to determine the variable 
being evaluated. 

(v) Check. Finally, since there are more equations than unknowns, it is 
checked that each is satisfied to the order available. 

9. SERIES A N A L Y S I S  

Our series calculations have been restricted to the case of a uniform 
activity (zl = z2 = z). This means that all the calculations involve series in 
only one variable rather than the two-variable series involved in our earlier 
work, ~ so that we avoid many of the technical problems which we described 
in connection with memory  management.  Restricting our calculations to 
zl = z2 prevents us f rom calculating the staggered susceptibility X +, but does 
not prevent us f rom calculating the staggered density R = p2 - pl since Eq. 
(3.7) enables us to obtain P2 and pl individually. 

The coefficients occurring in some of the matrix elements involve rational 
fractions. These were handled by mapping the fractions onto the field of  
integers modulo p~ for various primes p~. This procedure has been described 
by Borosh and Fraenkel (la~ and we have used it in obtaining high-field Ising 
model series. (14~ 

The first 43 series terms in K(z) and K(p), and the first 24 terms of K(x) 
and R(x), are tabulated in Appendix B. In view of the Conjecture (1.2), we 
have concentrated on using these series to estimate zc. 

In the absence of series for X § we have been unable to extract any useful 
estimates for zc from the low-density series. When attempting to fit Pad6 
approximants to series for K(z) and p(z) we find that the higher order approxi- 
mants cannot be determined uniquely with available machine accuracy. In 
other words, the 43 available coefficients can be represented to the available 
machine accuracy by using low-order approximants,  and these approximants 
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give no indication of any physical singularity. Gaunt and Guttmann (~5~ have 
pointed out that the method of N-point fits is less prone to such numerical 
instabilities than is the construction of Pad6 approximants. We found the 
improvement insufficient to enable us to ever construct a fit based on all of the 
43 coefficients. The results that we obtained represented the series in terms of a 
large number of poles on the negative z axis. Gaunt  and Fisher (e~ noted this 
type of behavior and remarked that it suggested a branch cut on part of the 
negative z axis. 

We also tried transforming the variable and examining the series for 
•(u) and K(p), where u = z / ( l  + z)  is a variable used by Gaunt and Fisher (6~ 
and O is the density. The former seemed to be no improvement on the z series; 
the latter has some advantages (the coefficients are smaller), but we are unable 
to add significantly to previous comments [paragraph containing Eq. (5.4) of 
Ref. 6]. Our estimates of Zc come from the high-density series for the order 
parameter R = 02 - p~. We constructed Pad6 approximants for ( d / d x ) I n  
R ( x )  and R(x) -8. We also analyzed the series for R(x) -a, using the ratio 
method. 

The series for ( d / d p ' ) I n  R(p ' )  were analyzed by Pad6 approximants to 
give estimates of pc and the exponent ratio/3/(1 - ~). We also attempted to 
analyze the series given by Gaunt  and Fisher for X + (P) using our improved 
estimate of pc, but this was inconclusive. 

The results of the Pad6 approximant analysis are given in Table 1, which 
gives the (physical) poles and residues for approximants to the three functions: 

(i) (d/dx)  In R(x) .  These approximants give particularly consistent esti- 
mates for Xc ~ 0.26341 and/3 ~ �89 Even the fact that some of the approxi- 
mants are not uniquely defined is an indication of the consistency of  the 
approximants, since it indicates that the series can be fitted to machine 
accuracy by using lower order approximants. We then used Pad6 approxi- 
mants to look for the singularities of R ( x ) -  8 and R ( x )  8. The former has the 
expected singularity at Xc, but the latter shows no sign of any singularity in 
this vicinity. For  these reasons we follow Gaunt and Fisher and hereafter 
assume/3 = } exactly. 

(ii) R ( x ) - 8 .  I f  fi = }, this function should have a simple pole (assuming 
that the physical singularity has no logarithmic corrections). The residues are 
tabulated as an indication of how consistently the approximants are represent- 
ing the behavior near xc. Although the variation in the estimates of xc is small, 
there does appear to be a slight trend toward smaller values Of Xc. From these 
figures we estimate xc = 0.263415 + 0.000015 or z = 3.7963 + 0.0002. 

(iii) (dido')  In R(p'), where p' = 1 - 20. Both the estimates of the p o l e s  
and the residues show quite a strong trend toward smaller values as the order 
of the approximant is increased. If  we assume (pc' - ,o') ~ (xc - x)  ~- ~", then 
we expect R(O') "~ (Pc' - P')~/~-~'~, so that the residues will be estimates of 
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Table I. Pad6 Approximants 
i i 

(d/dx) In R(x) R(x) 8 (d/df') In R(y)  

[D,, N]  Pole Residue Pole Residue Pole Residue 

[6, 7] 0.26334 -0.12430 - -  - -  0.26586 --0.1562 
[7, 6] 0.26334 -0.12431 - -  - -  0.26585 -0.1562 
[7, 7] 0.263344 -0.12434 0.263458 0.46490 0.26564 -0.1552 
[7, 8] ~ - -  0.263434 0.46434 0.26508 -0.1512 
[8, 7] 0.263399 -0.12473 0.263433 0.46430 0.26498 -0.1504 
[8, 8] a - -  0.263431 0.46425 0.26483 -0.1488 
[8, 9] ~ - -  0.263438 0.46444 0.26489 -0.1495 
[9, 8] 0.263390 -0.12466 0.263433 0.46432 0.26488 -0.1498 
[9, 9] 0.263410 -0.12486 0.263411 0.46333 0.26488 -0.1493 

[9, 10] 0.263406 -0.12481 0.263424 0.46400 0.26490 -0.1495 
[10, 9] 0.263406 -0.12481 0.263423 0.46394 0.26488 -0.1494 

[10, 10] 0.263408 -0.12483 0.263421 0.46385 0.26481 -0.1486 
[10, 11] 0.263410 -0.12487 0.263421 0.46384 0.26476 -0.1483 
[11, 10] 0.263411 -0.12487 0.263421 0.46384 0.26475 - 0 . 1 4 7 7  
[11, 11] 0.263415 -0.12494 0.263421 0.46386 0.26466 -0.1463 
[11, 12] - -  - -  0.263418 0.46372 - -  - -  
[12, 11] - -  - -  0.263418 0.46367 - -  - -  

These approximants are not uniquely defined, i.e., 
series can be fitted by lower order approximants. 

to machine accuracy the truncated 

- /3 / (1  - a ') .  W e  have  a t t emp t e d  to ex t rapo la te  the  t r ends  by  p lo t t i ng  the  

es t imates  f r o m  the  [D, N ]  a p p r o x i m a n t s  aga ins t  y = 1/(D + N) ,  N = D, 
N = D + 1, a n d  e x t r a p o l a t i n g  to y = 0. T h e  resu l t ing  g raphs  are n o t  par -  

t i cu la r ly  r egu la r  a n d  so we have  n o t  r e p r o d u c e d  them.  W e  es t imate  pc' = 
0.264 _+ 0.002 or  pc = (0.736 _+ 0.002)pm~x. This  is a s l ight  i m p r o v e m e n t  o n  

the es t imates  tha t  G a u n t  a n d  F i she r  o b t a i n e d  f r o m  the series for  X + (p')- The 

e x p o n e n t  es t imates  ex t rapo la te  to give/3/(1 - ~') = 0.138 + 0.008 or  ~'  = 

0.09 + 0.05, a s s u m i n g / 3  = ~. 
These  e x p o n e n t  es t imates  are pa r t i cu la r ly  in te res t ing  if  t h r ee - exponen t  

sca l ing  is a s sumed .  The  es t imates  of/3/(1 - ~') w o u l d  seem to p rec lude  the 
poss ib i l i ty  tha t  ~'  = 0 as in the  l s i n g  m o d e l  a n d  so scal ing prec ludes  the 

I s ing  m o d e l  resul t  o f ~  = 15. The  c~' e s t imate  above  gives 13.88 < 8 < 14.68. 
I f  3 were a n  in teger ,  t hen  scal ing w o u l d  give c~ = co' = 4,/3 = ~, 7'  = 7 = 1~, 

= 14, / 3 / ( 1 -  a ' ) =  +, a n d  ~ , / ( 1 -  a ) =  16 . U n f o r t u n a t e l y ,  w h e n  we 
ana lyze  X+(p) by the  ra t io  m e t h o d  to o b t a i n  es t imates  for  the  e x p o n e n t  

~,/(1 - a) we f ind t ha t  the  e x p o n e n t  es t imate  is o f  the  o rder  of  2.3, which  is 
m u c h  grea ter  t h a n  the  scal ing p red ic t ion .  A s s u m i n g  tha t  scal ing is n o t  v iola ted,  
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Table II. Ratio Method Analysis for [R(x)]  -8 = ~ = o  R n x  ~ 

n R~ r .  = R ~ / R ~ - I  t~ = ( R ~ / R ~ _ 2 )  1/2 

0 1 
1 8 8 
2 28 3.5 5.29150 
3 96 3.4286 3.46410 
4 366 3.8125 3.61544 
5 1,392 3.8033 3.80789 
6 5,312 3,8161 3.80968 
7 19,976 3.7605 3.78822 
8 76,285 3.8188 3.78958 
9 288,096 3.7766 3.79764 

10 1,097,428 3.8092 3.79287 
11 4,152,976 3.7843 3.79674 
12 15,799,082 3.8043 3.79427 
13 59,862,320 3.7890 3.79662 
14 227,546,756 3.8011 3.79507 
15 862,775,120 3.7916 3.79640 
16 3,278,079,614 3.7995 3.79555 
17 12,434,266,488 3.7932 3.79631 
18 47,230,647,652 3.7984 3.79578 
19 179,198,915,584 3.7941 3.79627 
20 680,552,451,060 3.7977 3.79593 
21 2,582,531,487,080 3.7948 3.79625 
22 9,806,668,461,772 3.7973 3.79603 
23 37,218,005,665,832 3.7952 3.79624 

we can only conclude that, because the singularity in p is rather weak, the 
series in p are not long enough to give reliable estimates of exponents. 

Returning to our primary concern of estimating z0, we have analyzed the 
series for R(x)-8 using the ratio method. Table II  gives the coefficients Rn, 
the ratios rn = R~/R,-I, and also t, = (R,/R,_2) 112. The ratios r ,  show a 
regular oscillation, with the even ratios converging to zc from above and the 
odd-numbered ratios converging to zc from below. This odd-even oscillation 
is somewhat reduced if one looks at t,, the geometric mean of r ,  and r,_ 1. 
Taking into account the fact that the odd t, values are varying more slowly 
than the even t~, we obtain our best estimate (1.5) of zc. 

10.  N U M E R I C A L  S O L U T I O N  O F  T H E  E Q U A T I O N S  

We also solved three truncations of Eqs. (2.18) numerically, using appro- 
priate subtruncations of (6.8) as initial guesses for high values o f  z, and of 
(7.6) for low values. Initial guesses for intermediate values were obtained by 
extrapolation. 



Hard-Square Lattice Gas 483 

In the low-density regime we used the two-by-two, three-by-three, and 
five-by-five top-left truncations of (7.6), since the corresponding series expan- 
sions are accurate to orders 7, 15, and 23 respectively. These truncations are 
also "na tu ra l "  in that the first is the Kramers-Wannier approximation ~12) 
and to leading order the second (third) is obtained from the first (second) by 
keeping all eigenvalues in the buildup procedure of Section 4. 

Presumably the exact infinite-dimensional solution is asymmetric 
(D r C, H z r H) for z > zc, but becomes symmetric at z = zo (this ensures 
that the transition is continuous). To observe this effect for the truncated 
matrices, one must make a truncation that permits it to occur. The values of 
s~ and tj should therefore be the same, at least to within permutations of the 
s~ (or tj), i.e., reordering rows and columns. 

At high densities we therefore truncated the matrices by selecting the 
following rows and columns of H and G and the corresponding diagonal 
entries of C, L, D, M (a) two-by-two : rows 1, 2; columns 2, 1 ; (b) three-by- 
three: rows 1, 2, 4; columns 2, 1, 3; (c) five-by-five: rows 1, 2, 4, 6, 3 ; columns 
2, 1 , 3 , 4 , 5 .  

These truncations have the same st, tj values as the corresponding low- 
density ones. We found that they did indeed become symmetric at a value 
zt of z, and that they were then the same as their low-density counterparts. 
The values of zt for the three truncations are 

2.8729, 3.4575, 3.7066 (10.1) 

For  such small truncations, these results are really quite good: presum- 
ably the sequence is converging to the value 3.796 ofzc predicted in Section 9. 

The asymmetric (high-density) solution exists only for z f> z,. The 
symmetric (low-density) one exists for z ~< z,, and also a little way into the 
interval z > zt. Presumably this penetration is an effect of the finite truncation 
and will disappear as the truncations increase in size. In any event, • is 
maximized by using the asymmetric solution for z > zt and the symmetric 
one for z ~< z,, and this is what we have done. 

Away from zc, the truncations appear to be converging rapidly, as has 
been observed for the CTMs of other models. (1,3,~ For  instance, for z = 2.8 
they give ~ = 1.9838, 1.9884, 1.9886 and p = 0.3146, 0.3216, 0.3222, respec- 
tively. 

In Fig. 6 the order parameter R = p2 - pl is plotted against z -  1 for the 
three approximations, indicating how the asymmetric (R r 0) solutions 
become symmetric (R = 0) as z is decreased to z~. Also plotted is In ~c: to this 
scale the three approximations for it are almost indistinguishable! 

We have also plotted In K (referred to as P in Ref. 6) against p. The 
resulting graphs are not reproduced here, since the 2 by 2 and 3 by 3 results 
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Fig. 6. ])lots of R(x) for (a) the 2 by 2 truncation, (b) the 3 by 3, (c) the 5 by 5. Also 
shown is the "exact" critical point x~ and the graph (d) of  In K. 

can barely be distinguished from the exact curve of Fig. 14 of Ref. 6, and the 
5 by 5 cannot be distinguished. 

11. S U M M A R Y  

We have used the truncated corner transfer matrix equations (2.18) to 
obtain the low-density series expansion of K(z) to order 42, and the high- 
density expansions of K(z-1) and R(z-1) to order 23. We have also solved 
some smaller truncations numerically. 

From the series for R(z -1) we have confirmed Gaunt  and Fisher's (6~ 
result ]3 = ~, and considerably reduced the error bounds on their estimate of 
zo. The central estimate is unchanged. 

These results are clearly in conflict with the conjecture (1.2) of Miiller- 
Hartmann and Zittartz, (a~ which gives xc - 0.25, zc = 4.0. It would take an 
extraordinary systematic bias to reconcile the sequences of Tables I and II 
with these values. 

We have also obtained from R(p') the moderately improved estimate 
0~ = (0.736 _+ 0.002)pm~x. 

Our attempts to determine other critical exponents produce results which 
seem to be distinct from the Ising model values, but we have been unable to 
obtain a consistent set of exponents ~,/3, and v which satisfy scaling. 

The numerical results are interesting in that they indicate how the solution 
of (2.18) behaves, but the series expansions provide more accurate estimates 
of z~ and the critical properties. 
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APPENDIX A. LEADING POWERS 

The vectors S and T and the leading powers of  the elements of  C, L, D, 
M, and G are given here. Asterisks denote elements that may be chosen to be 
unity; elements indicated by a dot are zero. The powers of  the diagonal 
elements of  C, D, L, and M are given in row vector form. Those of nonzero 
off-diagonal elements of  C and D are listed individually after G. 

High density (powers of  x = z -  1) 

s = ( 0  1 1 0 1 0 1 0 0 1 0 0 1) 

C: (0" 1 2 2 3 3 4 4 4 5 5 5 6) 

L:  (0" 1 2 5 3 6 4 7 5 5 10 6 6) 

T = ( 1  0 0 0 1 0 1 0 1 1 0 0) 

D: (0" 0 1 2 3 3 4 4 5 5 5 5) 

M:  (0" 1 2 3 2 4 3 5 4 6 9 6) 

G: 

-0" 0* 2 

0* 0* 

2 0* 

2 0* - 1  - 1  

4 2 0* 

2 1 0* - 1  

6 4 2 

3 2 1 0* 

4 3 2 1 

8 7 4 

3 2 1 0 

5 4 3 2 

10 8 6 

4 6 6 8 

2 4 

0* 2 

0* 0 2 

0* 

0 - 1 0* 

0* 

0 0 

1 0* 1 

2 

0* - 1  - 1  

2 1 1 

4 

7 10 9 6 8 

5 4 6 

3 2 4 

1 4 3 0* 2 

2 1 3 

0 2 1 - 1  1 

0* 0 2 

C89, C98: 4 
Cl1,12, C12,11, D~,lo, Dlo,9, D~1,1~, D12,1z: 5 

- 1  0* - !  - 2  O 

0 0* - 1 1 

0* 0* 

- 1  - 2  - 3  - 2  

0* 1 0 - 1  0 

2 - 1  0"- 
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Low density (powers of z) 

T =  S, D = C, M = L ,  G r = G 

S = ( O  1 0 0 1 0 1 0 0 1 0 0 1) 

C: (0 '  0 2 4 4 6 6 8 8 8 10 10 10) 

L: (0" 1 5 5 6 9 10 14 9 10 14 13 14) 

-0" 

0* 

1 0* - 2  

5 4 0* 0 

7 0* 0 

7 6 2 0* 0 - 2  

G: 9 2 0* - 2  

8 7 3 1 0* - 2  - 4  

11 10 6 4 3 0* 0 - 2  0 

13 6 4 0* - 2  0 

12 11 7 5 4 1 0* - 2  0 - 2  

13 12 8 6 5 2 1 - 2  0* 0 - 2  - 2  

.15 8 6 2 - 2  0* - 2  - 2  

(only the powers of the lower-left elements of G are shown) 

C89, C98: 8�89 
Cl1,12, C12.11: 10�89 

[In solving (2.18) we actually worked with L 1/2CL- 112 rather than C. All powers 

are then integers.] 



Hard-Square  Latt ice Gas 487 

APPENDIX B. SERIES COEFFICIENTS 

High-Densi ty:  Coeff ic ients of x n in the Expansion of 
x [K(x ) ]  2 and R(x) 

i 

n x [ ~ ( x ) ]  2 R(x) 

0 1 1 
1 1 - 1  
2 0 1 
3 1 - 6  
4 - 1  9 
5 5 - 6 0  
6 - 1 0  116 
7 39 - 6 8 5  
8 - 9 5  1,465 
9 353 -8 ,197  

10 - 9 6 0  18,770 
11 3,532 - 101,730 
12 - 10,284 244,592 
13 37,725 - 1,294,636 
14 - 114,966 3,229,643 
15 421,569 - 16,775,859 
16 - 1,327,087 43,075,617 
17 4,868,771 -220,289,362 
18 - 15,701,346 578,991,935 
19 57,660,914 -2,922,618,856 
20 - 189,473,994 7,832,501,622 
21 696,676,438 -39,099,055,551 
22 -2,323,894,060 106,531,725,770 
23 8,555,724,782 -526,655,410,908 
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Low-Densi ty :  Coef f ic ients  of z ~ and p~ in the Expansions of K(z) and ~(p) 
i |m  

0 ! 1 

1 1 1 
2 - 2  3 

3 8 7 

4 - 4 0  13 

5 225 17 

6 - 1,362 5 

7 8,670 - 51 

8 - 57,253 - 180 

9 388,802 - 376 

10 - 2,699,202 - 650 

11 19,076,006 - 1,634 

12 - 136,815,282 - 6,536 

13 993,465,248 - 23,576 

14 - 7,290,310,954 - 59,032 

15 53,986,385,102 - 70,664 

16 -- 402,957,351,939 154,964 

17 3,028,690,564,108 1,115,828 

18 --22,904,845,414,630 3,187,198 

19 174,175,863,324,830 4,791,554 

20 - 1,331,044,586,131,594 453,494 

21 10,217,222,223,168,657 -- 9,631,530 

22 --78,746,146,809,812,974 26,321,436 

23 609,153,211,886,323,748 260,559,872 

24 --4,728,123,941,310,119,629 599,839,326 

25 36,812,657,530,897,835,053 - 1,287,997,722 

26 -- 287,439,461,791,025,474,818 - 14,636,454,872 

27 2,250,314,840,062,625,743,472 - 54,542,259,400 

28 -- 17,660,572,072,127,314,002,800 -91 ,252 ,751 ,468  

29 138,917,347,311,377,551,474,338 147,076,485,384 

30 -- 1,095,044,102,004,611,782,219,794 1,487,978,128,638 

31 8,649,079,543,673,381,406,386,578 4,704,052,980,990 

32 -- 68,441,069,128,808,194,161,922,385 5,079,849,028,514 

33 542,528,768,962,390,004,584,576,547 -- 23,738,147,507,286 

34 -- 4,307,673,277,782,673,209,498,570,830 -- 143,783,668,419,110 

35 34,255,913,017,196,256,622,645,849,406 -- 357,511,314,22"~.,066 

36 -- 272,811,973,711,116,137,449,858,922,289 - 86,517,671,744,353 

37 2,175,663,718,003,877,171,512,666,515,965 3,077,284,192,138,255 

38 -- 17,373,555,504,340,949,646,557,187,291,612 13,682,193,414,479,531 

39 138,907,228,460,715,779,361,866,368,091,340 28,258,373,296,286,175 

40 --1,111,918,671,840,441,187,102,586,337,375,728 --9,315,888,451,955,854 

41 8,910,623,138,600,432,871,714,003,453,719,826 -- 300,653,929,789,475,442 

42 - 71,483,639,721,296,620,300,995,136,065,253,668 -- 1,180,466,383,460,671,734 
i 
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NOTE A D D E D  IN PROOF 

We cannot  exclude the possibility that a, v, ~ have their Ising values 
0,1,15. This has recently and  convincingly been argued.16,17 
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